ELECTRICAL ENGINEERING TECHNOLOGY, SMART GRID (B.S.)

Evening study available.

Bachelor of Science Program

Program Code: BS-SP Major Code: ETS

Engineering Technology Department

Technology Building 126 (716) 878-6017 engineeringtechnology.buffalostate.edu/ (https://engineeringtechnology.buffalostate.edu/)

The Electrical Engineering Technology, Smart Grid program is accredited by the Engineering Technology Accreditation Commission of ABET, http://www.abet.org under the commission's General Criteria and Program Criteria for Electrical/Electronic(s) Engineering Technology and Similarly Named Programs.

About the Program

Electrical Engineering Technology, Smart Grid graduates work in the fields of electrical power generation, transmission, and distribution; industrial, commercial, and residential electrical power distribution; as well as power systems protection, control, and monitoring.

Program Requirements

Program Requirements			
Code	Title	Credit Hours	
General Education 23 Requirements (http://ecatalog.buffalostate.edu/undergraduate/collegewide-degree-requirements-baccalaureate-degrees/#IF_Courses)			
33 credit hours	Φ	33	
Electrical Engineering Technology, Smart Grid Major Requirements (57 credit hours)			
ENT 104	ESSENTIALS OF ELECTRICAL ENGINEERING TECHNOLOGY	3	
ENT 300	MATHEMATICS APPLICATIONS IN ENGINEERING TECHNOLOGY	3	
ENT 301	MECHANICS I	3	
ENT 330	ELECTRICAL CIRCUITS ANALYSIS I	3	
ENT 332	ELECTRICAL CIRCUITS ANALYSIS II	3	
ENT 340	BUILDING INFORMATION MODELING (BIM) USING REVIT MEP	3	

ENT 341	ELECTRONICS	3
ENT 342	ADVANCED CIRCUIT ANALYSIS	3
ENT 371	ELECTRIC MACHINES	3
ENT 345	DIGITAL SYSTEMS	3
ENT 346	MICROCONTROLLERS	3
ENT 445	POWER ELECTRONICS	3
ENT 461	CONTROL SYSTEMS I	3
ENT 462	CONTROL SYSTEMS II	3
ENT 465	ELECTRICAL DESIGN I	3
ENT 466	ELECTRICAL DESIGN II	3
ENT 471	POWER SYSTEMS I	3
ENT 472	POWER SYSTEMS II	3
ENT 481	RENEWABLE DISTRIBUTED GENERATION AND STORAGE	3
Required Cou	rses Outside of Major	
25-30 credit ho	urs	25-30
PHY 107	GENERAL PHYSICS I	
or PHY 1	IUNIVERSITY PHYSICS I	
PHY 108	GENERAL PHYSICS II	
or PHY 1	IUNIVERSITY PHYSICS II	
CHE 111	FUNDAMENTALS OF	
& CHE 113	CHEMISTRY I	
	and LABORATORY FOR	
	FUNDAMENTALS OF	
OIG 151	CHEMISTRY I	
CIS 151	COMPUTER PROGRAMMING I	
	(11 credit hours)	
	APPLIED CALCULUS I	
	APPLIED CALCULUS II	
MAT 202	INTRODUCTION TO LINEAR ALGEBRA **	
$Math\ Option\ 2$	(11 credit hours)	
	CALCULUS I	
& MAT 163	and USING TECHNOLOGY	
	I (MAT 163 should be taken	
	concurrently with MAT 161 if taken	
	at Buffalo State University)	
MAT 162	CALCULUS II	
	and USING TECHNOLOGY	
	TO EXPLORE CALCULUS	
	II (MAT 164 should be taken	
	concurrently with MAT 162 if taken	

at Buffalo State University)

MAT 315 DIFFERENTIAL EQUATIONS ** Electives 6-10 Total Credit Hours 120

*

GE 23 number of credits is 33. However, required courses outside of major, such as MAT 126 or MAT 161 satisfy Mathematics and Quantitative Reasoning in GE 23; CHE 111 or PHY 107/111 satisfy Natural Science and Scientific Reasoning in GE 23. Therefore, the number of remaining credits in GE 23 required by the program is (33-6)=27 cr. [In GE 23 courses for each category are counted as 3 credits each. Therefore, the total number deducted is 6 credits].

**

MAT 202 for Track 1 and MAT 315 for Track 2 are preferred courses. Other mathematics courses such as Calculus III (MAT 263), or Discrete Mathematics (MAT 270) may be suggested by program advisement to better meet student's career choices.

Students will acquire:

- 1. An ability to apply knowledge, techniques, skills and modern tools of mathematics, science, engineering, and technology to solve broadly-defined engineering problems appropriate to the discipline.
- 2. An ability to design systems, components, or processes meeting specified needs for broadly-defined engineering problems appropriate to the discipline.
- An ability to apply written, oral, and graphical communication in broadly defined technical and nontechnical environments; and an ability to identify and use appropriate technical literature.
- 4. An ability to conduct standard tests, measurements, and experiments and to analyze and interpret the results to improve processes.
- An ability to function effectively as a member or leader on a technical team.